Probability and Random Processes ECS 315

Asst. Prof. Dr. Prapun Suksompong

prapun@siit.tu.ac.th
8 Discrete Random Variable

Office Hours:

BKD, 6th floor of Sirindhralai building
Wednesday 14:30-15:30
Friday
14:30-15:30

Discrete Random Variable

- A random variable is discrete if its values can be limited to only a countable number of possibilities.
- Recall that "countable" means
- finite or
- Countably infinite.
- Crucial skill 8.1.1: Determine whether a RV is discrete.

Chapter 5 vs. Chapter 8

- In Chapter 5, probability of any countable event can be found by knowing the probability $P(\{\omega\})$ for each outcome ω.
- In Chapter 8, probability of any statement about a discrete RV X can be found by using probability of the form $P[X=x]$ (without referring back to the outcomes and the sample space).
- Because $P[X=x]$ is important and use frequently, as a function of x, we name it the probability mass function (pmf).
- Definition: $p_{X}(x) \equiv P[X=x]$

Section 8.1

- Crucial skill 8.1.1: Determine whether a RV is discrete.
- Crucial skill 8.1.2: Determine the probability mass function (pmf) of a discrete RV when it is defined as a function of outcomes (as in Chapter 7).

Chapter 7 vs. Chapter 8

- In Chapter 7, RV are defined as a function of the outcomes.
- In Chapter 8, we want to talk about RV directly, skipping the outcomes.
- So, need to find ways to calculate probability without going back to the sample space.

Chapter 5:
Probability of any event can be found by knowing the probability $P(\{\omega\})$ for each outcome ω.

Chapter 7:
Probability of any statement about a RV can be found by converting the statement back into a collection of outcomes satisfying the statement.

- See "Method 2" in Chapter 7.
- Still use $P(\{\omega\})$

Chapter 8:

- $P(\{\omega\})$ is not available.
Probability of any
statement about a discrete
RV X will be found by using probability of the form $P[X=x]$.

Example 8.15: pmf and probabilities

Consider a random variable (RV) X.

$$
p_{X}(x)= \begin{cases}1 / 2, & x=1, \\ 1 / 4, & x=2, \\ 1 / 8, & x \in\{3,4\} \\ 0, & \text { otherwise }\end{cases}
$$

$$
p_{X}(x)=\mathrm{P}[X=x]
$$

$$
\begin{gathered}
P[X=2]=? \\
P[X>1]=?
\end{gathered}
$$

Example 8.15: pmf and probabilities

Consider a random variable (RV) X.
probability mass function (pmf)

$$
p_{X}(x)= \begin{cases}1 / 2, & x=1, \\ 1 / 4, & x=2, \\ 1 / 8, & x \in\{3,4\} \\ 0, & \text { otherwise }\end{cases}
$$

stem plot:

$$
\begin{aligned}
P[X=2] & =p_{X}(2)=\frac{1}{4} \\
P[X>1] & =p_{X}(2)+p_{X}(3)+p_{X}(4) \\
& =\frac{1}{4}+\frac{1}{8}+\frac{1}{8}=\frac{1}{2}
\end{aligned}
$$

Example: pdf and its interpretation

Consider a random variable (RV) X.

$$
p_{X}(x)= \begin{cases}1 / 2, & x=1, \\ 1 / 4, & x=2, \\ 1 / 8, & x \in\{3,4\} \\ 0, & \text { otherwise }\end{cases}
$$

stem plot:

Example: pdf and its interpretation

Consider a random variable (RV) X.
probability mass function (pmf) $\quad p_{X}(x)=\{1 / 4, \quad x=2$,

$$
p_{X}(x)= \begin{cases}1 / 2, & x=1, \\ 1 / 4, & x=2, \\ 1 / 8, & x \in\{3,4\} \\ 0, & \text { otherwise }\end{cases}
$$

Example: pdf and its interpretation

Consider a random variable (RV) X.
probability mass function (pmf) $\quad p_{X}(x)=\{1 / 4, \quad x=2$,
$\begin{cases}1 / 8, & x \in\{3,4\} \\ 0, & \text { otherwise }\end{cases}$

Example: Support of a RV

Consider a random variable (RV) X.

$$
p_{X}(x)= \begin{cases}1 / 2, & x=1, \\ 1 / 4, & x=2, \\ 1 / 8, & x \in\{3,4\} \\ 0, & \text { otherwise }\end{cases}
$$

$$
\text { probability mass function (pmf) } \quad p_{x}(x)= \begin{cases}1 / 4, & x=2,\end{cases}
$$

What about the support of this RV X ?

Example: Support of a RV

Consider a random variable (RV) X.

$$
p_{X}(x)= \begin{cases}1 / 2, & x=1, \\ 1 / 4, & x=2, \\ 1 / 8, & x \in\{3,4\} \\ 0, & \text { otherwise }\end{cases}
$$

$$
\text { probability mass function (pmf) } \quad p_{X}(x)= \begin{cases}1 / 4, & x=2, \\ 1 / & \end{cases}
$$

The set $\{1,2,3,4\}$ is a support of X.

Example: Support of a RV

Consider a random variable (RV) X.

$$
p_{X}(x)= \begin{cases}1 / 2, & x=1, \\ 1 / 4, & x=2, \\ 1 / 8, & x \in\{3,4\} \\ 0, & \text { otherwise }\end{cases}
$$

The set $\{1,2,2.5,3,4,5\}$ is also a support of this RV X.

Example: Support of a RV

Consider a random variable (RV) X.

$$
p_{X}(x)= \begin{cases}1 / 2, & x=1, \\ 1 / 4, & x=2, \\ 1 / 8, & x \in\{3,4\} \\ 0, & \text { otherwise }\end{cases}
$$

$$
\text { probability mass function (pmf) } \quad p_{X}(x)= \begin{cases}/ 4 & \end{cases}
$$

The set $\{1,2,4\}$ is not a support of this RV X.

Example: Support of a RV

Consider a random variable (RV) X.

$$
p_{x}(x)= \begin{cases}1 / 2, & x=1, \\ 1 / 4, & x=2, \\ 1 / 8, & x \in\{3,4\} \\ 0, & \text { otherwise }\end{cases}
$$

The set $\{1,2,3,4\}$ is the "minimal" support of X.

For discrete RV, we take the collection of x values at which $p_{X}(x)>0$ to be our "default" support.

Example: Support of a RV

Consider a random variable (RV) X.

$$
\begin{cases}1 / 2, & x=1, \\ 1 / 4, & x=2, \\ 1 / 8, & x \in\{3,4\} \\ 0, & \text { otherwise }\end{cases}
$$

$$
\text { probability mass function (pmf) } \quad p_{X}(x)= \begin{cases}1 / 4, & x=2, \\ 1,\end{cases}
$$

$$
p_{X}(x)=\mathrm{P}[X=x]
$$

stem plot:

The "default" support for this RV is the set $S_{X}=\{1,2,3,4\}$.

